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1. Introduction

Least squares methods have been useful for approximating solutions
to elliptic systems which are not strictly coercive., The Helmholtz equation
is perhaps the most important example ([1]-[2]). The main advantage of
the least squares formulation in this context, as compared with a standard
Galerkin formulation, is the fact that it always produces a Hermitian
positive definite system of algebraic equations. This is particularly
attractive for three dimensional problems where storage considerations
make iterative methods like S.0.R. desirable. The Stein-Ostrowski Theorem
[3] states that for Hermitian systems this iterative method converges if
and only if the system is positive definite,

The least squares formulation does however have one glaring defect,
namely the extreme regularity on the solution that 18 needed to obtain

convergence and stability. For example, a common least squares approximation

to

.1) Ap +qb=£f din R

1.2) =0 on 23N

is to require that

1.3) ﬁ]grad ¢—Ei2+ ldiv E+q¢—f|2}

Q

be minimized as ¢ and u vary over appropriate finite dimensional spaces.

The usual chofce {s let ¢,u be piecewise polynomials of degree k - 1 on a
grid with generic mesh spacing h. These spaces have the property that smooth
functions can be approximated to O(hk) in L,. However, for this to be true

2

of the least square approximations one needs, among other things, the




following regularity property [l]. There is a number 0 < C <= such that
for any function f 1in the Sobolev space Hl(Q) there i3 a unique solution
b of (1.1) = (1.2) such that

(1.4) Nt 3 = CcHfN 1 .
H”(Q) H™(Q)

This result is valid for only smooth regions , and in particular 1t 1is not
valid 1f 9 has corners. Moreover, numerical experiments indicate that
something like (l.4) may actually be necessary. For example, a series of
numerical experiments [4] with regions with cracks have shown that this
approach produces substandard results even with a rather extreme mesh
refinement near the cormer.

In this paper we consider an alternate least squares approximation in

weighted spaces. These are spaces where the analogs of (1.4) are valid 1if the

appropriate weights are used. The most important aspect of our error analysis

{8 that estimates can be derived in unweighted spaces for the

approximations. Numerical experiments indicate that the use of these weighted
spaces give a significant increase in accuracy, although refinement near the
crack is still needed as is to be expected.

For simplicity we shall consider planar regions { with only one corner
having interior angle 90 as shown in Figure 1. Our results are restricted
to the case 0 < 90 < 27  because of the crucial role played in the analysis
by the Hardy-Littlewood inequality and continuous embedding in weighted
Sobolev spaces. The latter is known to be valid only when 2 thas the cone
property, i.e., 8 # 2m. Moreover, the regularity results used for the
weighted Sobolev spaces have only been developed for planar or conical regioms
in [6], hence our restriction to the planar case. Neumann and mixed problems
could be treated analogously. For brevity we consider here only the Dirichlet

problem.
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FIGURE 1
The planar region

2. Formulation of the Approximation

For the number a >0 define

2 2 2
2.1 hwlt?, = e divxlle(Q)+ HXH[ZLz(Q)]z'

and let _Vgé(Q) be the closure of [Cm(ﬁ)]2 in this norm. Let

(2.2) s, c HY(®) c i@
’ § = ~h = =0
be finite dimensional spaces. We seek

(2.3) ¢6€s<5’ ghegh

which minimize




(2.4) ﬁ |grad w‘s -Xhlz + rdiv y_h+q1p6—f|2}
Q .

over wGG S(S’ zhe where r 1is the distance to the vertex (Fig. 1).

v
~h
Appropriate choices for o>0 will be discussed in the next section.

An equivalent statement of this variational principle involves the

bilinear form

(2.5) Ba((w,y_),(i,z)) =ﬁ(grad Y-v)* (grad &-w) +ra(div1+qyi) (div wtqf)
9]

and the functional

(2.6) F(E,u) = fr“f(divw q) .
Q

In particular, the minimum of (2.4) is characterized by the following

variational principle. Find functions (2.3) such that
§ _hy, _ § h
(2.7) B, ((9g>u ), (W7,v 7)) = F (¥ ,v)

holds for all 1,()6936 and y_he_l_/h.
o
Observe that BOL(',°) and Fa(-) are continuous on 1=Hl(Q) XE;‘(Q).

Indeed, taking

1
(2.8) N@,wlll = 1] grad ¢]|2 +Mell®, _+ llull? 37
[LZ(Q)]Z L2 1,0

[2]

as the norm on I, then as an easy consequence of the Schwarz inequality

we obtain with o> 0 and q¢€ LT ()

(2.9) 1B, (@0, W, | < ¢l @,w Il Il @,




and for feL2(Q) in (2.6).
(2.10) [F, .| ¢ cllf wwll.

Thus (2.7) has a meaning, and in fact, is equivalent to a Hermitian
nonnegative definite system of algebraic equations once a basis is chosen
for SG)<gh’ If we assume that (1.1) - (1.2) has a unique solution for
each fG'Lz(Q), then the algebraic system is positive definite. This will

be the case, for example, if q 1is never equal to an eigenvalue of the

Laplacian with Dirichlet boundary conditions.

3. Analysis of Errors

Because of the singularities in the solution to (1.1) - (1.2), piecewise

s and Yh’

and in this section we shall restrict attention to this case. The grids

linear functions are perhaps the most practical choices for §

for the space 36 of scalars need not coincide with the grids for the
space Vh of vectors, and as we shall see subsequently, there will be
important reasons for this.

We recall that approximation theory asserts that there is a positive
number C satisfying the following [5].

Given any uewk and ¢EH£(Q)(\ ﬁl(fl) there are u, € U, and

- - ~h " —h

$5€ SG such that

(3.1) Hg_il-hnt,a < Chullng,Ol H=min {k—t,ler-o—l+% }

(3.2) 1 o-8slle o< C‘Sg-t”‘b“z,o(l)




for 0<t<k<2, t<f and 0<h< EO’ 0< 65_60. The goal of this section

is to develop similar estimates for the errors
(3.3) e=u-uy, e=¢—¢6

in the least squares approximation.

Crucial to our error analysis is the regularity of the solutions to
(1.1) - (1.2) in appropriate Sobolev spaces. For simplicity we shall assume
that the interior angle is re-entrant, i.e., T< 60< 2m. Due to [51 for
given f€ LZ(Q) and q not being an eigenvalue there exists exactly one

. R | 1 27
solution ¢ of (1.1)-(1.2) in H ()N W_B(Q), B= 7 Therefore due to

0
Kondratiev [6] the following important regularity result holds.

Theorem 1: Let q be not an eigenvalue of (1.1), (1.2). Then there are

=g, Cg>0

(3.4) o>2t+2-2s R
0

0’ S0

such that for any fewg(Q) (t=0,1) the solution ¢ of (1.1) - (1.2) satisfies

(3.5) lolln.o <CallEll; o < CRliEl o

Moreover, for 1< s< 1+s0

(3.6) hells, 0% cll £llg o -

It is an easy consequence of (2.7) that {gh,¢6} is a best approxima-
tion to {grad $¢,} in the norm generated by Ba(~,-). Thus we have the
following consequence of Theorem 1 and the approximation properties (3.1) -

(3.2) together with (2.9).

Diere II-Hk o, denotes the norm associated with E§ . In addition, ILIIt 0
b
denotes the (unweighted) norm on Ht(Q). ’




Lemma 1. There is a constant C>0 depending only on C_, and

R
(3.7) a4 - 2L
0
such that
. L So
(3.8) B, ((e,8),(e,e))” = [l[e,e) il < cta+8 D[] 4.

Our next estimate is in the weighted dual norm defined as follows

f %y

(3.9) ”\b“: = sup{-sﬁm'l——z}.
n 1,04

Lemma 2. There is a constant C>0 depending only on o #1 which

satisfies (3.4), (3.8) and CR>0 such that

(3.10) latve+aell® ¢ o8 O+m) fllene -
Proof. Let n¢€ W(J)"_'_A be given, and consider the solution & to
(3.11) AE+qgE =n in Q, E=0 on T,
Letting
p = grad &
we have from (3.5) with o satisfying (3.4) and (3.7)

<

(3.12) ”R”Z’Oﬁ.q = ”6”3,a+4 = YR




Also

B, ((£,),(5,0)) = frin(dive+ae).

94
Using orthogonality this becomes
(3.13) B, ((6,0), (EE5ppy) = frncatve+ae)
£
Thus
(3.14) el M E-Espmppllly 2 | frintatve+aed] -

Using the approximation properties (3.1) - (3.2) and taking the sup over
n with ||nHl ats Sl we obtain (3.10) from (3.14) since the solution §
?

of (3.11) satisfies

lell o <clinll , <&l .
° L7 Woes

The latter inequality holds due to the continuity of the imbedding of

W; into Lz(a#l) ([7}, p.287). The cone property for  is needed for

this result.

Lemma 3. There is a constant C>0 depending only on o 2_4-%1,
0
lally_gy and ©g such that
) x50
(3.13) lell , <claiveraelly+ sl el
L) a a




Proof. The first step is to solve for € 1in LZ(Q)
(3.16) M+gqn=¢€¢ in Q, n=0 on T.
For this system we have from (3.4) and (3.5)

(3.17) Inlly o < cllelly o < cllell,

provided 2——62—n-< o for TT§_907‘ZTT. Also it follows from (3.16) that

0

leli2 = fe @n+any
Q

which after integrating by parts becomes

(3.18) HEH(Z) =ﬁ—grad€° grad n+ qen}
Q

But

(3.19) Bu((e,_e_),(n,g_)) = ﬁgrade-g)- gradn+ra(div_e_+q€)qn}.
Q

Thus combining (3.18) - (3.19) and using orthogonality we obtain

lellg =f{-g'gradn+q€ﬂ]+fru (dive+qe) an - B, ((e,e), (n-N,0)).

Integrating the first term on the right by parts gives the simpler form

(3.20) lell? = [[(c%+1) (dive+qeIn] - B ((e,e), (n-R,)0).
0 o é
] |
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The second term on the right hand side of (3.20) gives the second
term in (3.15). Thus our task is to estimate the first term. To do this
we use the Hardy-Littlewood inequality [7, p. 286]. This inequality states

with D = grad that

0-2
a/2 .2 S TD
(3.21) cllx™"“0%nllg g 2 lIr nllg, o
YAl
provided 2-v§— <0 . Note that
0
|f(raq+l) (dive+qe)n| < Cﬁdiv9_+q€| In|
1Y) Q
(3.22) = cﬁaldiv3+qe| |™%n].

Q

Thus using (3.9) we see that the right-hand side of (3.22) is bounded
above by

ath
lawve+aelly llx * graacc™mlly 4

which in turn is bounded above by

a-4

*
|ldiv_e_+qe:||a | x grad nHO,O'

To use (3.17) we must bound the second term in the above by |h1”2 5» and

to do this we take
(3.23) b-o=0-2

in the Hardy-littlewood inequality. This gives
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0/2D2

(3.24) |ﬁraq+l) (dive+ qE)nl <=C|| dive+qe H; Hr T]”O 0"
Q

But o satisfies (3.7) and thus by (3.23) and (3.17)

c/2 .2
(3.25) =" “pnll, < cliell,
provided
(3.26) 22 < o< 2+,
0 0

Combining (3.24) - (3.25) we obtain (3.15) from (3.20). Note that the
approximation property (3.1) for k=2, t=1 1is only quasi-optimal if
o satisfies (3.8).

Inserting (3.8) and (3.10) into (3.15) we obtain an L2-estimate

for €.

Theorem 2: There is a constant C depending only on I|q”1‘,cpi4-2ﬂ/60
«©

and CR such that

%0, .42
(3.27) lo-0gllg < €8 “+m[I£]];.

Remark. For optimal accuracy we take

1/s
(3.28) §=h 0;

since so==ﬂ/60, m< 60 < 2m, the grid for the scalar field ¢ must be finer

than that for the vector field u.
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We now use Lemma 1 to estimate e=u-u. To do this we shall need

for 36 to have an inverse property. More precisely, we shall assume

there is a number 0<C< ® independent of & such that

(3.29) luglly < e87 llugll, all wgess.
Theorem 3: Let (3.28) and (3.29) hold. Then for a34—g—g
(3.30) o ey llg < enll£]ly
Proof. Let Y¥gz€Ss satisfy
1+s . ~r

(3.31) llo-vgll_c cs ° ol e
for r=0 and r=1. Then from

lell2 - llgradell? < lle - grade||?
we obtain
(3.32) llelly < cllgradelly +lie,edlll ).
But
(3.33) llgradelly < llgrad@-vg)ll, + llgradwg-o )l -

We use (3.31) to estimate the first term, and apply the inverse inequality

(3.29) to the second term to get

S
0 -
(3.34) llgradelly < c8 “lloll,, +o8™ lug-04ll, -
0
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But

1+s

(3.35) los-05lly < No-oglly +llo-vslly < c5 Nl -

Combining these estimates we obtain (3.30) with (3.28).

Remark (i1). To get the full rate of convergence it is necessary to refine the

grid for the scalar potential ¢, taking

6'h oo
This gives
2
lely = 0(h"), fely = 0(h).
(ii). For mixed boundary conditions
- 9% _
(3.36) $=0 on FD’ v on FN

where Vv denotes the outer normal at the boundary I‘=I})U FN . The
/26

solution ¢ of (1.1) behaves like r 0©(¢) at the singular points,

where ¢ is analytic. Therefore the above analysis holds as well for

the mixed boundary value problem (1.1), (3.36) by choosing the weight

TT

>4 — ==
e0
260/1T
in the least squares scheme (2.4) and refining the mesh as §=h .

(iii). Since the solutions of crack problems behave like the solutions
of mixed boundary value problems with smooth boundary, our weighted least
squares method can also be applied to crack problems. Choosing a> 3,

6==h2 we obtain with piecewise linear test and trial functions

(3.37) lellg = 0@®; llelly = ot



14

The standard Galerkin procedure gives for € the same error estimate if
6==h2. But in order to obtain (3.37) for e with the Galerkin procedure,
one has to use special singularity functions as test and trial functions.
(iv). The results in this paper do not apply to the general three-
dimensional case because the regularity results used are not known for

three-dimensional domains with arbitrary corners.
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